DERIVE:@ To solvex+y=1 2x+3y=5 Author: [x+y=1, 2x+3y=5] Then solve Define Author: F(x):=x^3 Polar plot Plot-Options-State Plot dot Author: [RANDOM(1), RANDOM(1)] Plot-Plot Differentiate (d/dx)^nf(x) Author: dif(f(x), x, n) Integrate Sf(x)dx Author: int(f(x), x) Vector Author: [a, b, c] vector function [4^3, 6^3, .. , n^3, (n+2)^3, .. , 100^3] Author: vector(n^3, n, 4, 100, 2) Vectro dot product Author: [1,2].[2,3] vector cross product Author: CROSS(v, w) Matrix Author: [[a,b,c],[d,e,f],[g,h,i]] Matrix dot product Author: [[1,2],[3,4]].[[2,3],[3,4]] determinant Author: det([1,2,3],[3,4,5],[4,5,6]) physical.mth define k_ := Boltzmann constant 1.38*10^23 gn:= Standard acceleration of gravity 9.8 u/=v :u not equal v u<=v u>=v #e :base of ln 2.718 #i :imaginaly unit i pi :3.1415 inf :plus infinity deg :=pi/180 SQRT := x^(1/2) EXP(x) := (#e)^x LN(x) := LOG(x, #e) LOG(x) := LOG(x,10) SIN(x*deg) :sin x in degrees SIN(x) : sin x in radian ABS(x) := |x| SIGN(x) :sign of x MAX(x, y, ...) MIN(x, y, ...) STEP(x) :1 when x>0, 0 when x<0, +-1 when x=0 CHI(a, x, b) :1 when a<x<b, 0 when x<a or x>b FLOOR(m, n) : MOD(m, n) :m%n in C RE(x) :real part IM(x) :imaginal part CONJ(z) :complex conjugate PHASE(z) DIF(u,x,n) :Integral u(x) in x for n times INT(u, x) INT(u, x, -n) :? INT(u,x , a, b) : LIM(u, x, a) :lim of u(x) when x->a LIM(u, x, a, 1) :lim of u(x) when x->a from above LIM(u, x, a, -1) :lim of u(x) when x->a from below alpha beta gamma delta epsilon theta mu pi sigma tau phi omega +- :plus minus Copy and Paste in author F3 |