DERIVE:@

To solve
x+y=1
2x+3y=5
Author: [x+y=1, 2x+3y=5]
Then solve

Define
Author: F(x):=x^3

Polar plot
Plot-Options-State

Plot dot
Author: [RANDOM(1), RANDOM(1)]
Plot-Plot

Differentiate
(d/dx)^nf(x)
Author: dif(f(x), x, n)

Integrate
Sf(x)dx
Author: int(f(x), x)

Vector
Author: [a, b, c]

vector function
[4^3, 6^3, .. , n^3, (n+2)^3, .. , 100^3]
Author: vector(n^3, n, 4, 100, 2)

Vectro dot product
Author: [1,2].[2,3]

vector cross product
Author: CROSS(v, w)

Matrix
Author: [[a,b,c],[d,e,f],[g,h,i]]

Matrix dot product
Author: [[1,2],[3,4]].[[2,3],[3,4]]

determinant
Author: det([1,2,3],[3,4,5],[4,5,6])


physical.mth define
k_ := Boltzmann constant 1.38*10^23
gn:= Standard acceleration of gravity 9.8


u/=v :u not equal v
u<=v
u>=v

#e :base of ln 2.718
#i :imaginaly unit i
pi :3.1415
inf :plus infinity
deg :=pi/180

SQRT := x^(1/2)
EXP(x) := (#e)^x

LN(x) := LOG(x, #e)
LOG(x) := LOG(x,10)

SIN(x*deg) :sin x in degrees
SIN(x) : sin x in radian

ABS(x) := |x|
SIGN(x) :sign of x
MAX(x, y, ...)
MIN(x, y, ...)
STEP(x) :1 when x>0, 0 when x<0, +-1 when x=0
CHI(a, x, b) :1 when a<x<b, 0 when x<a or x>b
FLOOR(m, n) :
MOD(m, n) :m%n in C

RE(x) :real part
IM(x) :imaginal part
CONJ(z) :complex conjugate
PHASE(z)

DIF(u,x,n) :Integral u(x) in x for n times
INT(u, x)
INT(u, x, -n) :?
INT(u,x , a, b) :

LIM(u, x, a) :lim of u(x) when x->a
LIM(u, x, a, 1) :lim of u(x) when x->a from above
LIM(u, x, a, -1) :lim of u(x) when x->a from below

alpha
beta
gamma
delta
epsilon
theta
mu
pi
sigma
tau
phi
omega

+- :plus minus

Copy and Paste in author
F3